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We present an equation-free dynamic renormalization approach to the computational study of coarse-
grained, self-similar dynamic behavior in multidimensional particle systems. The approach is aimed at prob-
lems for which evolution equations for coarse-scale observables �e.g., particle density� are not explicitly
available. Our illustrative example involves Brownian particles in a 2D Couette flow; marginal and conditional
inverse cumulative distribution functions �ICDFs� constitute the macroscopic observables of the evolving
particle distributions.
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I. INTRODUCTION

Multiscale phenomena arise naturally in science and
engineering. In many cases of current research interest,
physical models are available at a fine, microscopic scale
�atomistic, stochastic, agent-based�, while we want to study
the system behavior at a coarse-grained, macroscopic level.
Macroscopic, coarse-grained evolution equations, even
when they conceptually exist are often unavailable in closed
form, due to the lack of accurate explicit closures. The
equation-free computational framework �1–4� has been
recently proposed for the computer-assisted study of pre-
cisely such complex, multiscale problems: those for whose
macroscopic behavior no explicit coarse-grained evolution
equations are available. Equation-free methods utilize so-
called coarse time steppers, which are used to numerically
analyze coarse-grained behavior through appropriately
designed short computational experiments performed by
the fine-scale models; coarse time stepping is closely related
to optimal prediction in the work of Chorin and coworkers
�5,6� �see also the discussion in �7��. Quantities necessary
for traditional continuum numerical analysis �residuals,
the action of Jacobians� are estimated on demand from
these short fine-scale computational experiments, rather
than evaluated from closed-form macrosopic equations. This
computational “enabling technology” has been used to
perform integration, fixed-point computation, numerical
stability and bifurcation analysis as well as control and
optimization for the coarse-grained behavior of a number of
fine-scale model types �lattice Boltzmann, Monte Carlo,
molecular dynamics, Brownian dynamics, etc., see the
references in �2,3��.

For problems whose macroscopic behavior is character-
ized by scale invariance, dynamic renormalization methods
�8,9� provide tools for locating self-similar solutions

and their scaling exponents �10,11�. Recently, we have
combined equation-free computation with dynamic renor-
malization to obtain coarse-grained self-similar solutions
based on direct microscopic simulation �12,13�; our particu-
lar implementation used a template-based approach �14–17�.
Working in a frame of reference that expands
�or shrinks� along with the macroscopic system observables
turns the self-similar problem into a steady state one,
for which fixed-point techniques can be applied. Equation-
free dynamic renormalization techniques are used here to
investigate macroscopic self-similarity in multidimensional
particle system dynamics. This is made possible through
a coarse time stepper which utilizes marginal and one-
dimensional conditional inverse cumulative distribution
functions �ICDFs� as the coarse observables of multidimen-
sional particle systems. Our illustrative example consists of
the �self-similar� dynamics of Brownian particles in a Cou-
ette flow; the results are validated using known analytical
solutions. The paper is organized as follows: we start with a
brief description of the coarse time stepper in our framework.
We then discuss equation-free dynamic renormalization,
present our illustrative example, demonstrate the computa-
tion of its self-similar shapes and exponents, and conclude
with a brief discussion of limitations and possible extensions
of the approach.

II. A COARSE TIME STEPPER FOR MULTIDIMENSIONAL
PARTICLE SYSTEMS

In the equation-free framework, short, appropriately ini-
tialized computational experiments with a fine-scale model
are used to construct the coarse time stepper—the basic
element capturing the dynamical interaction between coarse-
scale observables and fine-scale model states. There are
essentially three components in a coarse time stepper,
namely, lifting, fine-scale evolution, and restriction �1� �Fig.
1�. Lifting is a transformation that converts coarse-scale
observables to one or more consistent fine-scale realizations;*Electronic address: yannis@princeton.edu
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restriction is the transformation in the reverse direction, from
fine-scale states to coarse observables. The specific manner
in which these lifting and restriction operators are imple-
mented yields different interscale exchange protocols; one
must test that the results at the macroscopic level are rela-
tively insensitive to small details in the protocols �see the
discussion in �3��.

In macroscopically multidimensional particle systems,
particle positions are a natural component of the fine-scale
state, and marginal and conditional ICDFs of particle posi-
tions are good candidate coarse-scale observables. Assuming
smoothness, a finite number of marginal and conditional
ICDFs can be used to recover the distribution of particle
positions �e.g., through interpolation�. Our coarse observ-
ables are the leading coefficients of the projection of these
ICDFs on an appropriate orthonormal (shifted Legendre)
polynomial basis. Particle positions in one direction are gen-
erated using the marginal ICDF, and the corresponding par-
ticle positions in the second direction are generated using the
conditional ICDFs in our lifting step. For the restriction step,
after constructing a smooth multidimensional CDF from par-
ticle positions by simple interpolation, marginal and condi-
tional CDFs are first obtained, and then their inverse CDFs
are interpolated and their leading expansion coefficients
computed.

III. EQUATION-FREE DYNAMIC RENORMALIZATION

For many macroscale systems of practical interest, if the
partial differential equations �PDEs� describing their
evolution are scale invariant, they may possess self-similar
solutions �10,11�. Dynamic renormalization procedures have
been used for the study of such self-similar solutions
�8,9,18�; recently the template-based method for studying
the dynamics of problems with symmetry �16� has been
extended to study the dynamics of problems with scale in-
variance �14,15,17�. When scale invariant evolution PDEs
are explicitly available, a template-based approach can be
used to derive dynamical equations �termed “MN-
dynamics”� for the renormalized self-similar solutions and
similarity exponents �14�. The idea underlying this approach,
especially that of employing template conditions, can be
used to obtain renormalized self-similar solutions and simi-
larity exponents in systems whose macroscale governing
equations are not explicitly available �12� �see also the
approach in �19��.

Consider a PDE of the form

�F

�t
= Dxy�F� , �1�

where F�x ,y , t� is a CDF of particle positions. We assume
that for the differential operator Dxy there exist constants p
and a such that

Dxy� f� x

A
,

y

Ap�� = AaDuv„f�u,v�…, u =
x

A
, v =

y

Ap �2�

for any real function f , real value A�0, and coordinate
�x ,y� �there is no amplitude rescaling since this is a CDF�.
If a self-similar solution F�x ,y , t� exists, it can be written
as

F�x,y,t� = U� x

�cs�� ,
y

�cs��p ;c� , �3�

where c is a constant parametrizing the family of renormal-
ized shapes, and s= t− t0 �t0 is the blowup time for problems
with finite time singularities, whether forward or backward
in time�.

Therefore,

�a = − 1, �4�

and U satisfies the PDE,

− �uUu − �pvUv = c−1Duv�U� , �5�

where u=x / �cs��, v=y / �cs��p. For Dxy satisfying Eq. �2�, the
constant a is determined by Dxy itself and the similarity ex-
ponent � can be obtained by Eq. �4�.

If the equation is not explicitly available, one cannot ana-
lytically obtain the exponents a and p; tests have to be de-
vised for finding these constants—and thus testing the scale
invariance of the operator—before we embark upon the com-
putation of the self-similar solutions themselves.

For Dxy satisfying the �unknown� Eq. �2�, the constants
p and a can be obtained using a black box simulator of
the equation as follows: Since the unknown Eq. �2� is valid
for any real function f , let f be a test function, and let us
choose the two points �u1 ,v1� and �u2 ,v2� and let �x1 ,y1�
= �u1A ,v1Ap� and �x2 ,y2�= �u2A ,v2Ap�, where A is arbitrarily
chosen as a positive real value. Then the following two rela-
tions should hold for essentially arbitrary test functions
f�x ,y� and points �ui ,vi� , i=1,2:

Dxy� f� x

A
,

y

Ap���x1,y1� = AaDuv„f�u,v�…�u1,v1� ,

Dxy� f� x

A
,

y

Ap���x2,y2� = AaDuv„f�u,v�…�u2,v2� . �6�

Comparing the above two equations, we have

Dxy� f� x

A
,

y

Ap���x1,y1�

Dxy� f� x

A
,

y

Ap���x2,y2�
=

Duv„f�u,v�…�u1,v1�
Duv„f�u,v�…�u2,v2�

. �7�

Equation �7� is solved �using Newton’s method� for the con-
stant p. When Dxy is not explicitly available, Dxy(f�x ,y�) can

FIG. 1. Schematic of the coarse time stepper.
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be obtained by running the microsimulator for a short time
and numerically estimating the derivative �f /�t. Given p, the
constant a is calculated by

a = logA

Dxy� f� x

A
,

y

Ap���x1,y1�

Duv„f�u,v�…�u1,v1�
. �8�

Clearly, other test functions, as well as conditions evaluated
at other points �or nonlocal versions of the conditions� can be
used; care must be taken also to ensure the finiteness of the
estimated quantities.

Given a and p, to determine the self-similar shape of the
solution, we consider the general scaling

F�x,y,t� = �� x

A�t�
,

y

A�t�p ,t� , �9�

where A�t� is an unknown function. The PDE becomes

�t −
At

A
u�u −

pAt

A
v�v = AaDuv��� . �10�

Evidently, U and � are both rescaled CDFs.
The main idea of dynamic renormalization is to solve

Eq. �10� in a “co-exploding” or “co-collapsing” frame by
tracking the changes in the shape of the solution � as well
as the scale factor A�t�. This effective decoupling of
the shape evolution from the scale evolution is implemented
with the help of so-called template conditions �16�. Keeping
these conditions satisfied �along with Eq. �10�� dictates
the evolution of the scale factor �along with the solution
shape�. In this paper, we choose our template condition
to be

��e,�,t� = m, e � 0, 0 � m � 0.5, �11�

where e and m are both �essentially arbitrary� constants.
Imposing this template condition has the following physical
meaning: as the solution evolves both in shape and scale,
it is constantly rescaled so that the template condition re-
mains satisfied: the u coordinates corresponding to the
constantly rescaled marginal CDF �U=m have the same
value e for all t. There are no great restrictions in the
choice of template functions �see the discussion in �15�
as well as different template choices in �12��; later in this
paper, we allow our template to vary by changing the
value of e.

Applying this template to Eq. �10� and assuming
�� /�v�e ,v , t� decays exponentially as v→�, we have

Ate
��

�u
�e,�,t� + Aa+1Duv����e,�,t� = 0. �12�

Equations �10� and �12� are solved for the rescaled CDF
��u ,v , t� and rescaling variable A�t� if the operator Dxy is
explicitly known. As the time t→�, � may approach a
steady state, which is a stable self-similar shape for the so-
lutions to Eq. �1�.

The value for � can be calculated in the long-time
limit �i.e., after � reaches steady state�. Indeed, let t1 and t2
be distinct times after � reaches the steady state, then

� =
t2 − t1

A�t2�
At�t2�

−
A�t1�
At�t1�

. �13�

In many cases, the macroscale equation for the CDF of
particle positions may not be explicitly known. However, the
template conditions can still be used to renormalize the CDF
itself, evolved via microscale models, and rescaling variables
are obtained during the course of renormalization. In these
cases, a coarse time stepper is employed to evolve the coarse
system using the marginal and conditional ICDFs �actually,
the leading coefficients of their projection on an appropriate
basis� as coarse observables.

The procedure for equation-free renormalization, depicted
in Fig. 2, consists of the following six steps: �i� Generate the
marginal and conditional ICDFs according to the initial CDF
or according to the coefficients of dominant modes of the
ICDFs. �ii� Generate particle positions based on these ICDFs
using the lifting procedure in the coarse time stepper. �iii�
Evolve particle positions over a time interval T� using the
fine-scale model. �iv� Obtain ICDFs from particle positions
using the restriction procedure in the coarse time stepper. �v�
Rescale the marginal ICDF according to the template condi-
tion and obtain the rescaling variable A. We then rescale the
conditional ICDFs by Ap �recall that p has been indepen-
dently computed through Eq. �7��. This step can be justified
by Eq. �9�. Indeed, obtaining the rescaled solution �k+1 from
�k via the dynamics �10� and �12� is equivalent to starting
from the initial condition �k, running the original dynamics
for a while to get Fk+1, obtaining the rescaling variable A,
and rescaling Fk+1 by A and Ap respectively in the x and y

TABLE I. Iterations in the computation of the constants p and
a.

No. of iterations p a

0 6.0 −3.862 87

1 2.794 41 −1.830 47

2 2.978 49 −1.979 27

3 3.001 32 −2.001 14

4 2.998 04 −1.997 32

5 2.996 70 −1.996 12

6 2.994 41 −1.996 75

7 2.993 43 −1.991 13

8 2.994 00 −1.994 59

FIG. 2. Illustration for the coarse renormalization.
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directions. �vi� Project the rescaled ICDFs onto the appropri-
ate orthonormal basis and obtain the coefficients of its domi-
nant modes. Go back to step �i�.

The above procedure can be viewed as an iterative algo-
rithm to solve for the fixed point of a nonlinear operator �T�,
written as

� − �T���� = 0. �14�

This fixed point can be written in component form as �i,j
r , i

=1, . . . ,M +1, j=0, . . . , P �12�, or

� = ��1,0
r ,�1,1

r , . . . ,�1,P
r ,�2,0

r ,�2,1
r , . . . ,�2,P

r , . . . ,�M+1,0
r ,�M+1,1

r , . . . ,�M+1,P
r �T,

where �1,j
r , j=0,1 , . . . , P stands for the projection of the mar-

ginal ICDF onto a jth-order mode; �i,j
r , i=2, . . . ,M +1; j

=0,1 , . . . , P is the projection of the �i−1�th conditional
ICDF onto a jth-order mode; and the superscript r refers to
the fact that this is, in fact, the renormalized self-similar
shape. These coefficients correspond to the renormalized
ICDFs and CDF of the multidimensional particle system.
Equation �14� can also be solved using any numerical algo-
rithm such as direct iteration or matrix-free implementations
of Newton’s method �e.g., Newton-GMRES �20��.

IV. BROWNIAN PARTICLES IN COUETTE FLOW

We now illustrate our computational approach to self-
similarity in a two-dimensional Brownian model of particle
dispersion in Couette flow �21�. Let X�t� and Y�t� represent
particle positions in the x and y directions, respectively, at
time t on the plane. The particle positions evolve according
to

dX�t� = Dd�X�t�, dY�t� = Xdt , �15�

where �X�t� is a Wiener process �22� and D is the diffusion
coefficient. The discretized dynamics of �15� is given by �23�

Xk+1 = Xk + D�X,k
	�t, Yk+1 = Yk + Xk�t , �16�

where �X,k are independently and identically distributed stan-
dard Gaussian random variables and �t is the discrete time
step.

The dynamics �15� represent the motion of particles which
only diffuse in the x direction in a Couette flow �see the
discussion for both x and y diffusion�. It can be shown that
the coarse-scale dynamics for the pair distribution function
�PDF�, PXY�x ,y , t�, of a particle position, corresponding to
the fine-scale dynamics �15�, is governed by the following
equation �24�:

�PXY

�t
+ x

�PXY

�y
=

D2

2

�2PXY

�x2 , �17�

where PXY is assumed to be second-order differentiable.
Hence the dynamics for the CDF, FXY�x ,y , t�, associated
with �17� is given by

�FXY

�t
+ x

�FXY

�y
− 


−�

x �FXY

�y
dx =

D2

2

�2FXY

�x2 . �18�

In the above equation, the operator Dxy is written as

Dxy = − x
�

�y
+ 


−�

x �

�y
dx +

D2

2

�2

�x2 . �19�

This operator satisfies the invariance property �2�, with
constants p=3 and a=−2.

The analytical self-similar solution to the PDF equation
�17� is

PXY�x,y,t� =
	3

	D2�t − t0�2


exp�− �6„y − 0.5x�t − t0�…2

D2�t − t0�3 +
x2

2D2�t − t0��� ,

�20�

where t0 is the blowup time �forward or backward in time�;
the corresponding CDF self-similar solution to �18� is

FXY�x,y,t� =
	3

	D2�t − t0�2



−�
x 


−�

y

exp�− �6„y − 0.5x�t − t0�…2

D2�t − t0�3

+
x2

2D2�t − t0���dydx . �21�

Let u�=x / (c�t− t0�)1/2 and v�=y / (c�t− t0�)3/2; then

FXY�x,y,t� = FUV�u�,v�� =
	3

	D2/c2



−�
u�


−�

v�
exp�− �6�v − 0.5u/c�2

D2/c3 +
u2

2D2/c
��


dvdu . �22�

Hence for the integro-differential equation �18�, the similar-
ity exponent � in �3� is �=1/2. For the CDF in �22�, its
standard deviations in two directions and correlation are
�X=D /c1/2, �Y =D / �	3c3/2�, and �XY =	3/2, respectively.

V. NUMERICAL RESULTS

We now compute the self-similar solutions without the
macroscopic equations, based only on the particle simulator.
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The invariance property of the �presumed unavailable� mac-
roscale differential operator Dxy has to be established first.
Then the fixed-point algorithm is used to solve for the renor-
malized CDF steady-state shape, and the similarity exponent
is computed. The diffusion coefficient D and simulation time
step �t in the fine-scale model are set to 5.0 cm/s1/2 and
0.01 s, respectively. An ensemble of 9000 �N=9000� par-
ticles is typically used in the fine-scale simulations.

Without the macroscale equation �18�, we use Newton’s
method to solve Eq. �7� for p. Our test function f is a two-
dimensional joint Gaussian, f�x ,y�=1/4.52N�x /4.5�

N�y /4.5�, where N�x� and N�y� are standard Gaussian dis-
tributions. The positive real number A=2.0. The two coordi-
nates �u1 ,v1� and �u2 ,v2� in �7� are chosen as
�−2.5,−2.5� and �3.5,3.5�, respectively. To reduce fluctua-
tions of values for the operator Dxy, 200 copies of values for
Dxy and Duv are averaged in the computation.

Starting from the initial value p0=6.0, iterative values for
p are stabilized at 3.0 after three iterations. Accordingly, the
converged value for a is approximately −2.0 �Table I� �other
test functions and test point selections gave similar results�.

This suggests that the unavailable differential operator
Dxy corresponding to the microsimulator �15� does indeed
possess the invariance property �2� for constants p=3.0 and
a=−2.0.

To determine the self-similar shape, the template condi-
tion for the x direction was chosen as ��−2.266,� , t�=0.4,
i.e., the x coordinate corresponding to the renormalized mar-
ginal CDF �U=0.4 always has the same value, −2.266 cm.
For the analytical solution �22� and our template, c
=0.3125 s−1 and the corresponding standard deviations are
�X=4	5 cm and �Y =12.8	15/3 cm, respectively.

A uniform particle CDF over the space domain
�−10 cm,10 cm�
 �−10 cm,10 cm� is used as the initial
condition for our equation-free fixed-point algorithm. Direct
iteration is used to solve the fixed point of Eq. �14�. The time
interval T� is 150�t. The number of conditional ICDFs is 20
�M =20� and the bases for the both types of ICDF are the
shifted Legendre polynomials of order up to and including 5
�P=5�. In this simulation, 200 copies of 5000 particle posi-
tions are generated according to the ICDF mode coefficients
at the beginning of each iteration and let to evolve for time
T�. The mode coefficients at the end of each iteration are
obtained by averaging over these 200 copies. After the sec-
ond, fourth, and sixth iterations, mode coefficients of renor-

malized ICDFs are used to generate particle positions, out of
which the CDFs are computed and plotted respectively in
Fig. 3. It can be seen that the renormalized solutions reach a
steady state quickly.

To verify the self-similar shape of the solution, the stan-
dard deviations and correlation of the simulated self-similar
shape are compared with those of the analytical self-similar
shape. The standard deviations and correlations of the res-
caled CDFs are calculated via the ensemble particle positions
corresponding to these CDFs. The comparison is shown in
Fig. 4. The standard deviations and correlations of rescaled
CDFs approach those of the analytical self-similar shape,
which means that the rescaled CDF quickly approaches a
member of the family of theoretical self-similar shapes ex-
pressed by Eq. �22�.

As the renormalized CDF ��u ,v , t� reaches the steady
state, we can set this CDF as the initial condition and run the

FIG. 3. �Color online� Renormalized CDFs. Top left: initial CDF; top right: renormalized CDF after second iteration; bottom left:
renormalized CDF after fourth iteration; bottom right: renormalized CDF after sixth iteration �see text�.

FIG. 4. Computational vs theoretical values for the standard
deviations and the correlation of the self-similar shapes. Cases �1�,
�2� in Eqs. �23a� and �23b� �see text�.
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microscale dynamics �16� for two more loops with
t1=150�t and t2=300�t. The rescaling variable A�t� is listed
in Table II. Note that A�t�=1 at t=0. By Eq. �13�, the simi-
larity exponent � is approximately estimated as 0.461, which
is within 8% of the theoretical value 1/2.

We now study the effect of varying templates and report-
ing horizons in the fixed-point operator �T� on our results;
different templates should give different members in the
family of Eq. �5�, while T� should not affect the computed
fixed points.

Four combinations of template condition and evolution
times including the one above are investigated as follows: for
Case �1�

��− 2.266,�,t� = 0.4, T� = 150�t , �23a�

for Case �2�

��− 2.266,�,t� = 0.4, T� = 250�t , �23b�

for Case �3�

��− 0.227,�,t� = 0.4, T� = 150�t , �23c�

for Case �4�

��− 0.227,�,t� = 0.4, T� = 250�t . �23d�

The iterative values of standard deviations and correlation
for the four cases are shown in Figs. 4 and 5. Comparison
with theoretical calculations shows that variation of tem-
plates and evolution times indeed does not cause deviation of
the converged rescaled CDF from the family of self-similar
solutions.

VI. CONCLUSIONS

We presented a coarse dynamic renormalization tech-
nique, based on a coarse time stepper using marginal and
conditional ICDFs as coarse-scale observables, for the
computer-assisted analysis of multidimensional self-similar
particle systems. For coarse-grained differential operators
that possess a scale-invariance property of the type arising in
our numerical example, a single template condition is neces-
sary for rescaling the ICDFs. In our example, we confirmed

that the steady-state shape of the renormalized CDFs of par-
ticle positions is not affected by the template condition and
evolution time interval in our coarse time stepper.

The equation-free dynamic renormalization technique was
applied only to a simple two-dimensional Brownian particle
system in this paper. In our computations, we had already
factored out translational invariance; we also knew the par-
ticular coordinate system �the x and y axis� in which the
macroscopic differential operator is scale invariant. Finding
this information, if unknown, can be incorporated in the test
procedure for scale invariance. For higher-dimensional diffu-
sive particle systems, this technique may still be used. In
these cases, conditional ICDFs in third or higher dimensions
have to be utilized, thus rendering the computations slightly
more complicated, yet still qualitatively similar to the ones
presented here. Using appropriately selected template condi-
tions, this technique can also be used to approximate coarse-
grained asymptotically self-similar shapes; this is the case for
our Couette example when the particles diffuse in both the x
and y directions �work in progress�. Several other examples
of coarse self-similarity �e.g., models of glassy dynamics,
KPZ-type evolution of interfaces, dynamics of energy spec-
tra in randomly forced PDEs� are also being explored.

TABLE II. Values of the rescaling variable A�t� in Eq. �13�.

t �sec� A�t� At�t�

0 1.000 00 —

1.5 1.208 72 0.139 15

3.0 1.382 43 0.115 81

FIG. 5. Computational vs theoretical values for the standard
deviations and the correlation of the self-similar shapes. Cases �3�,
�4� in Eqs. �23c� and �23d� �see text�.
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